III B. Tech II Semester Supplementary Examinations, November -2019
 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours
Max. Marks: 70

$$
\begin{aligned}
& \text { Note: 1. Question Paper consists of two parts (Part-A and Part-B) } \\
& \text { 2. Answering the question in Part-A is compulsory } \\
& \text { 3. Answer any THREE Questions from Part-B } \\
& * * * * *
\end{aligned}
$$

PART -A
(22 Marks)

1. a) List the properties of DT system.
b) Find and plot the spectrum of $\delta(n-1)$.
c) Find the IZT of $X(z)=\frac{z}{z-1}$, for $|z|>1$ and $|z|<1$.
d) Explain the mapping of s-plane to z-plane in impulse invariant transformation.
e) Give the schematic representation of decimator and interpolator.
f) What are the important features of programmable digital signal processor?

PART -B

2. a) Discuss the stability of the systems described by the impulse response below:

$$
\begin{array}{ll}
\text { i. } & h(n)=2^{-n} u(n) . \\
\text { ii. } & h(n)=0.5^{n} u(n)-0.5^{n} u(4-n) .
\end{array}
$$

b) Determine the steady-state response of the system governed by the following difference equation: $12 y(n)-Z(n-1)+y(n-2)=\sin \left(\frac{\pi}{3} n\right) u(n)$.
3. a) Compute the coefficients of the Fourier series of the periodic sequence given [8M] below and plot its spectrum. $x(n)=\sin \left(\frac{2 \pi n}{N}\right)$, for $N=20$.
b) Compute the 8 -point DFT of the following sequence using radix-2 DITFFT algorithm: $x(n)=\delta(n)+2 \delta(n-1)-\delta(n-2)+\delta(n-3)$.
4. a) Compute the time response of the causal system described by the transfer function $H(z)=\frac{(z-1)^{2}}{z^{2}-0.32 z+0.8}$ when the input signal is the unit step.
b) Give the direct form-I and direct form-II realizations for the transfer function:

$$
H(z)=0.0034+0.0106 z^{-2}+0.0025 z^{-4}+0.0149 z^{-6}
$$

5. a) Distinguish between FIR and IIR filters.
b) What are the analog to digital filter transformation techniques? Explain.
6. a) What is the difference between single-rate and multi-rate systems? Explain with examples.
b) Give the frequency domain description of up-sampler.
7. Write notes on the following:
a) Specialized addressing modes.
b) TMS320C5x bus structure.
\|""|"||"|"|l|||wWW. manaresults.co.in

III B. Tech II Semester Supplementary Examinations, November -2018 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)
Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

 PART -A

1 a) Test the given system for time invariance : $y(n)=n x(n)$.
b) State any four properties of DFT
c) Find the Z-transform of $x(n)=(1 / 8)^{n} u(n)$ and its ROC.
d) Draw the direct form structure of $y(n)=\sum_{k=0}^{N-1} h[k] x[n-k]$
e) What is the significance of Multirate Signal processing? What are the applications
f) What are the differences between fixed point processors and floating point Processors?

PART -B

2 a) Find the solution to the following linear constant coefficient difference equation with initial conditions $y(-1)=4$ and $y(-2)=10$
$y(n)-\frac{3}{-} y(n-1)+\frac{1}{y} y(n-2)=\frac{1}{1}$ for $n \geq 0$
b) Explain the frequency domain representation of Discrete time signals

3 a) Given $x(n)=\{1,2,3,4,4,3,2,1\}$, find $X(k)$ using DIF FFT algorithm.
b) State and prove time - shifting and time scaling property of DFT.

4 a) Determine the ZT of $x[\mathrm{n}]=-n \mathrm{a}^{\mathrm{n}} \mathrm{u}[-\mathrm{n}-1]$.
b) What are the basic structures of FIR systems? Explain

5 a) What are the effects of windowing? Comparing various windowing techniques.
b) Design a High Pass FIR filter whose cut-off frequency is 1.2 radians/sec and $\mathrm{N}=9$ using Hamming Window.

6 a) Derive the frequency domain representation of decimator.
b) Explain the following terms: i) Up - sampling
ii) Down- sampling

7 a) What is MAC? Explain its operation in detail.
b) Explain about Special addressing modes

Code No: RT32042

III B. Tech II Semester Supplementary Examinations, November/December-2016 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)
Time: 3 hours
Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

 PART -A

1 a) What is BIBO stability? What are the conditions for BIBO stability?
b) Distinguish between linear and circular convolutions of two sequences.
c) Define canonic and non-canonic structures.
d) Explain Gibb's phenomenon.
e) Show that the interpolator is a time-variant system.
f) Write down the applications of each of the families of TIs DSPs.

PART -B

2 a) Explain the method of obtaining the frequency response of linear shift-invariant systems.
b) For the following discrete time signals, determine whether or not the system is linear, shift invariant, causal and stable.
(i) $y(n)=x(n+7)$
(ii) $y(n)=x^{3}(n)$
c) Determine the magnitude and phase response of the following system:
$\mathrm{y}(\mathrm{n})=[\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)] / 2$.
3 a) State shifting property of the DFT.
b) Compute the FFT for the sequence $\mathrm{x}(\mathrm{n})=\mathrm{n}^{2}+1$ where $\mathrm{N}=8$ using DIT algorithm.
c) What is DIT FFT algorithm?

4 a) How will you develop a cascade structure with direct form II realization of a sixth order IIR transfer function?
b) Realize an FIR filter with impulse response is given by

$$
h(n)=(1 \mid 2)^{n}[u(n)-u(n-5)]
$$

5 a) Compare bilinear transformation and other transformations based on their stability.
b) The desired frequency response of a low-pass filter is

$$
\begin{aligned}
& \text { response of a low-pass tilter is } \\
& H_{d}\left(\mathrm{e}^{\mathrm{j} \omega}\right)= \begin{cases}\mathrm{e}^{-\mathrm{j} 3 \omega}, & -\frac{3 \pi}{4} \leq \omega \leq \frac{3 \pi}{4} \\
0, & 3 \pi / 4<|\omega| \leq \pi\end{cases}
\end{aligned}
$$

Determine $H\left(\mathrm{e}^{\mathrm{j} \omega}\right)$ for $\mathrm{M}=7$ using a rectangular window.
6 a) Discuss the computationally efficient implementation of interpolator in an FIR filter.
b) Draw and explain the polyphase structure of a decimator.

7 a) List the family members of the first generation TMS processor and note down the distinguished features.
b) List the enhanced features of the TMS320C5X processor.

III B. Tech II Semester Supplementary Examinations, April/May -2019 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

PART-A

1 a) What are the conditions for stability and causality of an LSI system?
b) Define DFT and IDFT
c) Find the z transform of $x[\mathrm{n}]=\operatorname{sins}\left[\omega_{\mathrm{o}} \mathrm{n}\right] u[\mathrm{n}]$.
d) What is the necessary and sufficient condition for linear phase Characteristics of an FIR filter?
e) What is meant by aliasing? How to avoid it?
f) What are the advantages of VLIW architecture?

PART-B

2 a) Determine the frequency response, and time delay of the systems given by

$$
y(n)-\frac{1}{2} y(n-1)=x(n)
$$

b) What is the significance of convolution? Explain
b) State any four properties of DFS and prove them

Realize the following IIR system in the direct form I, direct from II and parallel forms.

$$
H(z)=1 /\left(1+a z^{-1}\right)\left(1-b z^{-1}\right)
$$

a) The desired frequency response of a low pass filter is

$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{c}
1 ; \frac{-\pi}{2} \leq w \leq \frac{\pi}{2} \\
0 ; \frac{\pi}{2} \leq w \leq \pi
\end{array} \quad \text { Determine } h_{d}(n) \text { for } M=7\right. \text { using a rectangular window }
$$

b) Explain FIR filter design using windowing method.
a) Explain the following terms: i) Decimation ii) interpolation.
b) What are the applications of Multi rate system? Explain.
a) What are the various addressing modes used in the TMS320C5X processor? [8M]
b) What are the limitations of pipelining in Digital Signal Processor?

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-Ais compulsory
 3. Answer any THREE Questions from Part-B

 PART-A

1 a) What are the elementary discrete time signals?
b) Find the IDFT of $Y(k)=(1,1,1,0)$
c) State the properties of ROC.
d) Why IIR filters do not have linear phase?
e) Explain how a multi-rate system is different from a single-rate system?
f) Explain the basic architectural features of programmable DSP devices.

PART -B

a) Find the periodicity of the signal $x(n)=\sin (2 \pi n / 3)+\cos (\pi n / 2)$
b) Explain the frequency response of discrete time system.
c) What is the causality condition for an LTI system?
a) Find the DFT of $\mathrm{x}[\mathrm{n}]=\mathrm{a}^{\mathrm{n}}$ for $0 \leq \mathrm{n} \leq 3$ $=0$ otherwise.
b) Find the linear convolution of the sequences $x[n]=\{1,4,0,9,-1\}$ and $h[n]=\{-3,-4,0,7\}$

4 a) State and prove any three properties of Z- Transform.
b) Obtain direct form I, direct form II and cascade realizations of system described by the equation, $y[n]=y[n-1]-(1 / 2) y[n-2]+x[n]-x[n-1]+x[n-2]$

5 a) Determine the system function $H(Z)$ of the lowest order Chebyshev digital filter that meets the following specifications.
i) 3 db ripple in the passband $0 \leq|\omega| \leq 0.3 \pi$
ii) At least 40 dB attenuation in the stopband $0.35 \pi \leq|\omega| \leq \pi$. Use the bilinear transformation.
b) Explain the need for the use of window sequence in the design of FIR filter. Describe the window sequence generally used and compare the properties.
a) What is Interpolation? Explain about the frequency domain description of an Interpolator.
b) What do you mean by fractional sampling rate conversion? Explain with an example of converting 48 kHz signal to 44.1 kHz signal using multi-stage fractional sampling rate converter.

7 a) Discuss in detail the Basic Architectural features of programmable DSP devices,
b) Discuss in detail the Pipeline Operation of TMS320C54XX Processors.

Digital Signal Processing

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-Ais compulsory
 3. Answer any THREE Questions from Part-B

 PART - A

1 a) Define discrete time signal and give examples.
b) What are the advantages FFT over DFT.
c) What are the different methods of evaluating inverse z transform?
d) Draw the indirect form realizations of FIR systems?
e) Derive transfer function of an Interpolator.
f) Discuss about the various sources of errors in the computation using DSP processor implementations.

PART -B

2 a) Discuss the frequency domain representation of linear time-invariant systems.
b) Determine the frequency response for the system given by

$$
\mathrm{y}(\mathrm{n})-3 / 4 \mathrm{y}(\mathrm{n}-1)+1 / 8 \mathrm{y}(\mathrm{n}-2)=\mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{n}-1)
$$

3 a) Find the DFT of the sequence $\mathrm{x}[\mathrm{n}]=\{1,2,1,2,1,2,1,2\}$ using decimation in time algorithm.
b) State and prove any four Properties of discrete Fourier series.

4 a) With respect to Z transforms define the properties of ROC.
b) Obtain the parallel form realization for the IIR system described by the transfer function $H(z)=\frac{3+3.6 z^{-1}+0.6 z^{-2}}{1+0.1 z^{-1}-0.2 z^{-2}}$.

5 a) Convert the following analog transfer function in to digital using bilinear transform and IIT methods with $\mathrm{T}=1 \sec \quad H(s)=\frac{s}{(s+3)(s+9)}$
b) Design a HPF of length 7 with cut off frequency of $2 \mathrm{rad} / \mathrm{sec}$ using Hamming window..

6 a) With necessary derivations explain the operation of sampling rate conversion by a factor of I/D in both frequency and time domains.
b) What are the applications of multirate digital signal processing?

7 a) Explain the various pipeline programming models that are adapted in DSP processors.
b) Explain the Bus Architecture of DSP Processor.
2. Answering the question in Part-Ais compulsory
3. Answer any THREE Questions from Part-B

PART-A

1 a) Determine whether the following system given by $\mathrm{y}(\mathrm{n})=\log 10[\{\mathrm{x}(\mathrm{n})\}]$ is Casual or not.
b) What are the properties of convolution sum?
c) List the applications of Z - transforms.
d) Compare Chebyshev Filter and Butterworth Filter.
e) Derive transfer function of Decimator.
f) What are the functional units present in the TMS320C54XX processor?

PART-B
2 a) Consider a signal $x[n]=(-a)^{-n} u[n]$ determine the spectrum $\mathrm{X}(\mathrm{w})$.
b) Determine the response of Second order Discrete Time system governed by the difference equation $y(n)-2 y(n-1)-3 y(n-2)=x(n)+4 x(n-1), n \geq 0$, when the input signal is $x(n)=2^{n} u(n)$, with initial conditions $y(-2)=0, y(-1)=5$.
3 a) Explain the significance of FFT algorithms. Draw the basic butterfly diagram for radix-2 DIT-FFT.
b) Find the DFT of $x[n]=\{0.5,0.5,0.5,0.5,-1,-1,-1,-1\}$ using decimation in time algorithm.
4 a) Find the Z-Transform $x[n]=\left(\frac{1}{3}\right)^{n} \operatorname{Sin}\left[\frac{\pi}{4} n\right] u[n]$.
b) Realize $H(z)=\frac{1+0.6 z^{-2}+0.2 z^{-1}}{3+5 z^{-1}+4^{-2}}$ using Direct form I and Direct form II structures

5 a) Distinguish between "maximally flat magnitude response" and "equiripple magnitude response" filters.
b) Explain the impulse invariance method of IIR filter design.
a) Explain the concept of multi rate signal processing along with two applications of it
b) Explain how sampling rate conversion of band pass signals can be achieved.

7 a) Explain in detail the circular addressing mode and bit-reversed addressing mode.
b) Explain Memory Access schemes in DSPs.

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-Ais compulsory
 3. Answer any THREE Questions from Part-B

 PART-A

 PART-A}

1 a) Determine whether the system defined by $y(n)=x\left(-n^{2}-2\right)$ is time invariant or not.
b) What is FFT? How many multiplications and additions are required to compute N point

DFT using redix- 2 FFT?
c) State and prove Parsvel's theorem.
d) Why FIR filters are always stable?
e) What is Down sampling?
f) Explain the role of on-chip peripherals for programmable digital signal processors.

PART -B

a) For each case determine the system is stable or causal
i) $h(n)=\sin (\pi n / 2)$
ii) $h(n)=\delta(n)+\sin \pi n$
iii) $h(n)=2 n u(-n)$
b) Show that an LTI system can be described by its unit sample response.

3 a) State and prove convolution Properties of DFT.
b) Compute the DFT for the sequence $(0.5,0.5,0.5,0.5,1,1,1,1)$ using DIF-FFT

Find the Inverse Z-Transform of $X(z)=\frac{1-\frac{1}{3} z^{-1}}{\left(1-z^{-1}\right)\left(1+2 z^{-1}\right)},|z|>2$ using partial fractions method.
b) Obtain the cascade form realization for the recursive IIR system described by the [8M

5 a) Explain the design procedure for IIR filters using Butterworth approximations.
b) A low pass filter is to be designed with the following desired frequency response.

$$
\begin{gathered}
\mathrm{H}_{\mathrm{d}(}\left(\mathrm{e}^{\mathrm{j} w}\right)=\mathrm{e}^{-\mathrm{j} 2 \mathrm{w}},-\pi / 4 \leq \omega \leq \pi / 4 \\
0, \quad \pi / 4 \leq|\omega| \leq \pi
\end{gathered}
$$

Determine the filter coefficients $\mathrm{h}_{\mathrm{d}}(\mathrm{n})$ if the window function is defined as

$$
\omega(\mathrm{n})=1, \quad 0 \leq \mathrm{n} \leq 4
$$

$$
0 \text {, otherwise }
$$

Also determine the frequency response $\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right)$ of the designed filter.

1 of 2

6 a) With the help of an example define Decimation and Interpolation operations in DSP.
b) A signal, $\mathrm{x}(\mathrm{n})$, at a sampling frequency of 2.048 kHz is to be decimated by a factor of 32 to yield a signal at a sampling frequency of 64 Hz . The signal band of interest extends from 0 to 30 Hz . The anti-aliasing digital filter should satisfy the following specifications:
Pass band deviation 0.01 dB
Stop band deviation 80 dB
Pass band $0-30 \mathrm{~Hz}$
Stop band $\quad 32-64 \mathrm{~Hz}$
The signal components in the range from 30 to 32 Hz should be protected from aliasing. Design a suitable two stage decimator.

7 a) What is the difference between internal and external modes of clocking of TMS320C54XX Processor?
b) Explain different pipeline programming models that are adapted in DSP processors?

Code No: RT32042

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours
Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

 PART -A

1 a) Test whether the following signal is periodic or not ,if periodic find the fundamental period $\sin \sqrt{2} \pi t$
b) Find the DFT of a sequence $\mathrm{x}(\mathrm{n})=\{1,1,2,2\}$
c) Give block diagram representation of linear constant-coefficient difference equations.
d) By impulse invariant method obtain the digital filter transfer function and the differential equation of the analog filter $\mathrm{h}(\mathrm{s})=1 / \mathrm{s}+1$
e) What are the applications of multi rate DSP?
f) List special feature of DSP architecture.

PART -B

2 a) Determine whether each of the following systems defined below is (i) casual (ii) linear (iii) dynamic (iv) time invariant
(i) $y(n)=\log _{10}[\{x(n)\}]$
(ii) $y(n)=x(-n-2)$
(iii) $\mathrm{y}(\mathrm{n})=\cosh [\mathrm{nx}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)]$
b) Give the frequency domain representation of discrete time signals.

3 a) Compute the DFT for the sequence $\{1,2,0,0,0,2,1,1\}$. Using radix - 2 DIF FFT and radix -2 DIT- FFT algorithm.
b) Derive the equation to implement a butterfly structure In DITFFT algorithm.

4 a) Realize the filter $\mathrm{H}(\mathrm{z})=\left(z^{-1}-a\right)\left(z^{-1}-b\right) /\left(1-a z^{-1}\right)\left(1-b z^{-1}\right)$ in cascade and parallel forms.
b) State and prove time convolution property of Z-Transforms.
a) Obtain the impulse response of digital filter to correspond to an analog filter with impulse response $h_{a}(t)=0.5 \mathrm{e}^{-2 t}$ and with a sampling rate of 1.0 kHz using impulse invariant method.
b) Compare bilinear transformation and impulse invariant mapping.
a) Explain the decimation and interpolation process with an example. Also find the spectrum.
b) The sequence $\mathrm{x}(\mathrm{n})=[0,2,4,6,8]$ is interpolated using interpolation sequence $\mathrm{b}_{\mathrm{k}}=[1 / 2,1,1 / 2]$ and the interpolation factor is 2 .find the interpolated sequence $\mathrm{y}(\mathrm{m})$.

Digital Signal Processing

7 a) Describe the multiplier/adder unit of TMS320c54xx processor with a neat block diagram. [8M]
b) What are interrupts? What are the classes of interrupts available in the TMS320C5xx processor?

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours
Maximum Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B
$* * * * *$
PART -A

1 a) Test whether the following signal is periodic or not ,if periodic find the fundamental period $\sin 20 \pi t+\sin 5 \pi t$
b) Find the values of WNk , When $\mathrm{N}=8, \mathrm{k}=2$ and also for $\mathrm{k}=3$.
c) Draw the direct form realization of FIR system.
d) What are the properties of chebyshev filter?
e) Find the spectrum of exponential signal decimated by factor 2 .
f) What are the advantages of VLIW architecture?

PART -B

2 a) Determine the impulse response of the filter defined by $y(n)=x(n)+b y(n-1)$.
b) A system has unit sample response $h(n)$ given by $\mathrm{h}(\mathrm{n})=-1 / \delta(\mathrm{n}+1)+1 / 2 \delta(\mathrm{n})-1-1 / 4 \delta(\mathrm{n}-1)$. Is the system BIBO stable? Is the filter causal? Justify your answer.

3 a) Find the DFT of the sequence $x[n]=\{1,2,3,4,5,6,7,8\}$.
b) Explain the use of FFT algorithms in linear filtering and correlation.

4 a) Determine the cascade and parallel realization for the system transfer function
b) State and prove frequency convolution property of Z-Transforms.

5 a) Design an ideal high pass filter with a frequency response
Hd (ejw) $=1$ for $\pi / 4 \leq|w| \leq \pi$

$$
=0 \text { for }|\mathrm{w}| \leq \pi / 4 \quad \text { Find the values of } h(n) \text { for } N=11 \text { using }
$$

Hamming window. Find $\mathrm{H}(\mathrm{z})$ and determine the magnitude response.
b) Derive the expression for Bi linear Transform.

6 a) Explain the operation used in DSP to increase the sampling rate.
b) The sequence $\mathrm{x}(\mathrm{n})=[0,2,4,6,8]$ is interpolated using interpolation sequence [8 M] $\mathrm{bk}=[1 / 2,1,1 / 2]$ and the interpolation factor is 2 .find the interpolated sequence $\mathrm{y}(\mathrm{m})$.

7 a) Explain the different types of interrupts in TMS320C54xx Processors.
b) Describe any four data addressing modes of TMS320c54xx processor.

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours
Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answering the question in Part-A is compulsory
 3. Answer any THREE Questions from Part-B

PART-A

1 a) Test the following systems for time invariance $y(n)=n x^{2}(n)$
b) Define DFT and IDFT
c) What are the applications of Z-Transforms?
d) What are the advantages of Kaiser widow?
e) What are "decimation", "decimation factor "and "down sampling"?
f) List the on-chip peripherals

PART -B

2 a) Determine and sketch the magnitude and phase response of the following systems
(i) $y(n)=1 / 3[x(n)+x(n-1)+x(n-2)]$
(ii) $y(n)=1 / 2[x(n)-x(n-1)] \quad$ (iii) $y(n)-1 / 2 y(n-1)=x(n)$
b) Determine the impulse response of the filter defined by $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+\mathrm{by}(\mathrm{n}-1)$.
a) Determine IDFT of the following
(i) $\mathrm{X}(\mathrm{k})=\{1,1-\mathrm{j} 2,-1,1+\mathrm{j} 2\} \quad$ (ii) $\mathrm{X}(\mathrm{k})=\{1,0,1,0\}$
b) Find the DFT of the sequence $\mathrm{x}[\mathrm{n}]=\{1,2,3,4,5,6,7,8\}$ using DITFFT.

4 a) Obtain the direct form I, direct form II and Cascade form realization of the following system functions.
$\mathrm{Y}(\mathrm{n})=0.1 \mathrm{y}(\mathrm{n}-1)+0.2 \mathrm{y}(\mathrm{n}-2)+3 \mathrm{x}(\mathrm{n})+3.6 \mathrm{x}(\mathrm{n}-1)+0.6 \mathrm{x}(\mathrm{n}-2)$.
b) Explain Transposed forms.

6 a) What is Multi Rate Signal Processing? Explain any two applications of multirate signal processing.
b) Derive the Frequency domain Transfer function of a Decimator.

7 a) List the major architectural features used in DSP system to achieve high speed program execution.
b) With examples explain the different addressing formats supported by DSP processors for various signal processing applications.

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours
Maximum Marks: 70

> Note: 1. Question Paper consists of two parts (Part-A and Part-B)
> 2. Answering the question in Part-A is compulsory
> 3. Answer any THREE Questions from Part-B
> $* * * * *$
> PART -A

1 a) Test the following systems for time invariance $\mathrm{a}^{\mathrm{x}(\mathrm{n})}$.
b) What are the advantages of FFT over DFT.
c) Find the Z-transform of $\mathrm{x}(\mathrm{n})=(1 / 8)^{n} \mathrm{u}(\mathrm{n})$ and its ROC.
d) What is the necessary and sufficient condition for linear phase Characteristics in FIR filter?
e) Explain the term up sampling and down sampling.
f) What are the different stages in pipelining?

2 a) A system has unit sample response $h(n)$ given by
$\mathrm{h}(\mathrm{n})=-1 / \delta(\mathrm{n}+1)+1 / 2 \delta(\mathrm{n})-1-1 / 4 \delta(\mathrm{n}-1)$. Is the system BIBO stable? Is the filter causal? Justify your answer
b) Give the frequency domain representation of discrete time signals and systems.

3 a) How is the FFT algorithm applied to determine inverse discrete Fourier transform?
b) Derive the equation to implement a butterfly structure In DIFFFT algorithm

4 a) Obtain the direct form I, direct form II and Cascade form realization of the following system functions.
$\mathrm{Y}(\mathrm{n})=0.1 \mathrm{y}(\mathrm{n}-1)+0.2 \mathrm{y}(\mathrm{n}-2)+3 \mathrm{x}(\mathrm{n})+3.6 \mathrm{x}(\mathrm{n}-1)+0.6 \mathrm{x}(\mathrm{n}-2)$.
b) Prove that FIR filter has linear phase if the unit impulse response satisfies the condition $\mathrm{h}(\mathrm{n})=\mathrm{h}(\mathrm{N}-1-\mathrm{n}), \mathrm{n}=0,1, \ldots \ldots \mathrm{M}-1$. Also discuss symmetric and antisymmetric cases of FIR filter.
5 a) Determine $\mathrm{H}(\mathrm{Z})$ for a Butterworth filter satisfying the following specifications:
$0.8 \leq \mid H\left(e^{\mathrm{j} \omega} \mid \leq 1\right.$, for $0 \leq \omega \leq \pi / 4$

$$
\mid \mathrm{H}\left(\mathrm{e}^{j \omega} \mid \leq 0.2, \text { for } \pi / 2 \leq \omega \leq \pi\right.
$$

Assume T= 0.1 sec . Apply bilinear transformation method
b) Use bilinear transformation method to obtain $\mathrm{H}(\mathrm{Z})$ if $\mathrm{T}=1 \mathrm{sec}$ and $\mathrm{H}(\mathrm{s})$ is
$1 /(\mathrm{s}+1)(\mathrm{S}+2), 1 /(\mathrm{s} 2+\sqrt{2} \mathrm{~s}+1)$.
6 a) With necessary derivation explain the operation of sampling rate conversion by a non integer.
b) The sequence $\mathrm{x}(\mathrm{n})=[0,3,6,9]$ is interpolated using interpolation sequence $\mathrm{bk}=[1 / 3$, $2 / 3,1,2 / 3,1 / 3]$ and the interpolation factor of 3 . Find the interpolated sequence $y(m)$.
7 a) Explain Memory Access schemes in DSPs.
b) Explain the memory interface block diagram for the TMS 320 C5x processor.

Code No: RT32042

SET - 1
III B. Tech II Semester Regular Examinations, April - 2016
DIGITAL SIGNAL PROCESSING
(Electronics and Communication Engineering)
Time: 3 hours
Maximum Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-Ais compulsory
3. Answer any THREE Questions from Part-B

PART - A

1 a) Find the power of the given signal below?

$$
x[n]=\{0 \quad n<0
$$

b) Compare overlap-add method and overlap-save method
c) Compare direct form I and direct form II realization of IIR systems.
d) What conditions are to be satisfied by the impulse response of an FIR system in order to have a linear phase?
e) What is the need for multirate signal processing?
f) What are the differences between fixed type processors and floating type processors?

PART-B

2 a) Find the solution to the following linear constant coefficient difference equation

$$
y(n)-\frac{3}{z^{2}} y(n-1)+{ }_{z}^{1} y(n-2)=\left(\frac{1}{2}\right)^{n} \text { for } n \geq 0
$$

With initial conditions $\mathrm{y}(-1)=4$ and $\mathrm{y}(-2)=10$.
b) Derive the relationship between impulse response and frequency response of a discrete time system.
3 a) Compute the DFT of the sequence $x(n)=\sin [n \pi / 4]$, where $N=8$ using DIT FFT algorithm
b) Determine the IDFT of the sequence

$$
X(K)=(6,-\sqrt{2}-\mathrm{j} 4.8284,-2+\mathrm{j} 2, \sqrt{2}-\mathrm{j} 0.8284,-2, \sqrt{2}+\mathrm{j} 0.8284,-2
$$

$$
-\mathrm{j} 2,-\sqrt{2}-\mathrm{j} 4.8284
$$

4 Obtain the cascade and parallel realisation structures for the following signals.

$$
H(z)=\frac{2\left(1-z^{-1}\right)\left(1+\sqrt{2} 2 z^{-1}+z^{-2}\right)}{\left(1+0.5 z^{-1}\left(1-0.9 z^{-1}+0.81 z^{-2}\right)\right)}
$$

5 a) The desired frequency response of a low pass filter is 3π

$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{c}
e^{-j 3 w} \quad \sum_{\text {elsewhere }}^{4} \tag{10M}\\
0
\end{array}\right.
$$

Determine $\mathrm{H}\left(\mathrm{e}^{\mathrm{jw}}\right)$ for $\mathrm{M}=7$ using a rectangular window.
b) What are the effects of windowing?

6 a) Derive an expression for the spectrum of output signal of an decimator.
b) What are the applications of multirate system?

7 a) What is MAC? Explain its operation in detail.
b) What are the various addressing modes used in the TMS320C5X processor?

Digital Signal Processing

2 of 2

Code No: RT32042

SET - 2

III B. Tech II Semester Regular Examinations, April - 2016
 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours
Maximum Marks: 70

> Note: 1. Question Paper consists of two parts (Part-A and Part-B)
> 2. Answering the question in Part-A is compulsory
> 3. Answer any THREE Questions from Part-B
> $* * * * *$
> PART -A

1 a) Show that the following systems are nonlinear and time invariant. $\mathrm{y}(\mathrm{n})-\mathrm{x}(\mathrm{n}) \mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})$
b) Write computation efficiency of FFT over DFT.
c) What are the basic building blocks of realization structures?
d) Obtain the mapping formula for the impulse invariant transformation.
e) Write some examples of multirate digital systems.
f) What are the advantages of DSP processors in relation to general purpose processors?

PART - B

2 a) Determine the frequency response, magnitude and phase responses and time [10M] delay of the systems given by 1

$$
y_{n}-\frac{y}{}\left(\frac{1}{n}-1=x(n)\right.
$$

b) Explain causality and stability of dlinear time invariant system.

3 a) Find the DFT of the following sequence using FFT DIF? $X(n)=\{1,2,3,5,5,3,2,1\}$
b) Compute the DFTs of the sequence $\mathrm{x}(\mathrm{n})=2^{-\mathrm{n}}$, where $\mathrm{N}=8$ using DIT algorithm
4 Develop the cascade and parallel forms of the following causal IIR transfer functions.

$$
H(z)=\frac{\left(3+5 z^{-1}\right)\left(0.6+3 z^{-1}\right)}{\left(1-2 z^{-1}+2 z^{-2}\right)\left(1-z^{-1}\right)}
$$

5 a) Convert the analog filter to a digital filter whose system function is

$$
H(s)=\frac{1}{(s+2)^{2}+(s+1)}
$$

Use bilinear transformation.
b) What is a Kaiser window? In what way is it superior to other window functions?

1 of 2

6 a) Draw the block diagram of a multistage interpolator and explain it
b) A one stage decimator is characterized by the following Decimator factor $=3$.

Anti-aliasing filter coefficients $h(0)=-0.06=h(4), h(1)=0.3=h(3), h(2)=0.62$.
Given the data, $\mathrm{s}(\mathrm{n})$ with successive values $[6,-2,-3,8,6,4,-2]$, calculate and list the filtered output and the output of the decimator
7 a) Draw and explain the memory architecture of the TMS320C3X processor.
b) What are the major advantages of having on-chip memory?

Code No: RT32042

R13

SET - 3

III B. Tech II Semester Regular Examinations, April - 2016
 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)
 Maximum Marks: 70

Time: 3 hours
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-Ais compulsory
3. Answer any THREE Questions from Part-B

PART -A

1 a) Show that the following system is nonlinear and time invariant.

$$
\mathrm{y}(\mathrm{n}+2)+2 \mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}+1)+2
$$

b) State all properties of DFT
c) Distinguish the canonic and non-canonic structures.
d) Discuss the stability of the impulse invariant mapping technique.
e) What is meant by aliasing? How to avoid it?
f) List the basic characteristics of digital signal processor.

PART -B

2 a) Determine the frequency response, magnitude and phase responses and time delay of the systems given by $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})-\mathrm{x}(\mathrm{n}-1)+\mathrm{x}(\mathrm{n}-2)$
b) State and explain the transfer function of an LTI system.

3 a) Find the N-point DFT for $\mathrm{x}(\mathrm{n})=\mathrm{a}^{\mathrm{n}}$ for $0<\mathrm{a}<1$?
b) Given $\mathrm{x}(\mathrm{n})=\{1,2,3,4,4,3,2,1\}$, find $\mathrm{X}(\mathrm{k})$ using DIF FFT algorithm.

4 Realize the following IIR system functions in the direct form I and II and also [16M] parallel form.

$$
H(z)=\frac{1}{\left(1+a z^{-1}\right)\left(1-b z^{-1}\right)}
$$

5 a) Design a digital Butterworth filter that satisfies the following constraint using [10M] bilinear transformation. Assume $\mathrm{T}=1 \mathrm{sec}$.

$$
\begin{aligned}
& 0.9 \leq\left|H\left(e^{j w}\right)\right| \leq 1 \quad 0 \leq w \leq \frac{\pi}{2} \\
& \left|H\left(e^{j w}\right)\right| \leq 2 \quad \frac{3 \pi}{4} \leq w \leq \pi
\end{aligned}
$$

1 of 2

R13

SET - 3

b) What is a Hamming window function? Obtain its frequency domain [6M] characteristics.

6 a) Draw the block diagram of a multistage decimator and explain it
b) Discuss the computationally efficient implementation of decimator in an FIR [8M] filter.

7 a) Draw and explain the major block diagram of the TMS320C3X.
b) Explain the function of Barrel Shifter in the digital signal processor.

III B. Tech II Semester Regular Examinations, April - 2016
 DIGITAL SIGNAL PROCESSING
 (Electronics and Communication Engineering)

Time: 3 hours
Maximum Marks: 70

> Note: 1. Question Paper consists of two parts (Part-A and Part-B)
> 2. Answering the question in Part-Ais compulsory
> 3. Answer any THREE Questions from Part-B
> $* * * * *$

PART-A
1 a) What isBIBO stability? What are the conditions for BIBO system?
b) How FFT is more efficient to determine DFT of sequence?
c) Distinguish between the methods of realization namely, block diagram representation and signal flow graph for implementing the digital filter transfer function.
d) What is the impulse invariant technique?
e) What are the drawbacks in multistage implementation?
f) Mention various generations of digital signal processors.

PART-B
2 a) Determine frequency, magnitude and phase responses and time delay for the system.

$$
y(n)+\underset{4}{1}(n-1)=x(n)-x(n-1)
$$

b) Define the terms : linearity, time invariance and causality for a discrete time system.

3 a) Compute the FFT for the sequence $\mathrm{x}(\mathrm{n})=\mathrm{n}+1$ where $\mathrm{N}=8$ using DIT algorithm
b) State and prove the periodicity property in DFT.

4 Realize the following IIR system functions in the direct form I and II and also [16M] parallel form.

$$
\mathrm{H}(\mathrm{z})=\frac{1}{\left(1-\mathrm{az}^{-1}\right)^{2}}+\frac{1}{\left(1-\mathrm{bz}^{-1}\right)^{2}}
$$

5 a) What are the requirements for converting a stable analog filter into a stable digital filter?

Code No: RT32042
R13
SET - 4
b) The desired frequency response of a low pass filter is

$$
\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{j w}\right)=\left\{\begin{array}{cc}
1 ; & -\frac{\pi}{2} \leq w \leq \frac{\pi}{2} \\
0 ; & \frac{\pi}{2} \leq w \leq \pi
\end{array}\right.
$$

Determine $h_{d}(n)$ for $M=7$ using a rectangular window.
6 a) How can sampling rate be converted by a rational factor M/L?
b) Draw and explain the polyphase structure of a interpolator.

7 a) Explain the purpose of six registers used in the TMS320C2X processor.
b) What are the limitations of pipelining in Digital Signal Processor?

